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Microstrip Line
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Abstract —The problem of an open microstrip tine is analyzed by the

spectral-domain method combhed with the sampling theorem. In the

spectral domain, the boundary condkions of zero tangential electric fields

are expressed in terms of the convolution integral forms with a sampling

function, and these relations are discretized by the method of moments

with the spherical Bessel fnnction as a weighting function. A well-chosen

incorporation of the Weber-Schafheitlin integration f ormula yields good

accuracy and saves a significant amount of time in numerical calculations.

Numerical examples are shown for the effective dielectric constants and

for the current distributions, both Iongitndinaf and transverse, in compari-

son with the results obtained by various other methods.

I. INTRODUCTION

M ICROSTRIP has become one of the most important

elements in microwave integrated circuits, and a

great many authors have analyzed the propagation charac-

teristics of modes on a microstrip line. Earlier works [1], [2]

were based on the quasi-TEM approximation, which is

valid only for low frequencies. For high frequencies, how-

ever, a rigorous treatment or a full-wave analysis is needed

to account for the dispersive properties of the propagation

characteristics of the stripline [3]–[13]. In this case the

accuracy of the final results depends on how accurately the

current distributions on the microstrip line have been

evaluated.

Various methods based on a full-wave theory have been

proposed to obtain both longitudinal and transverse cur-

rent distributions. The spectral-domain approach seems to

be one of the most powerful analytical methods, since the

Green function in the spectral domain can be obtained

rigorously for a rnicrostrip-like structure. In the conven-

tional spectral-domain analyses [5], [11], however, the

Galerkin’s procedure has been applied in order to deter-

mine the unknown coefficients of the expanded current

distributions, and the final numerical results are strongly

dependent on the choice of the basis functions. To over-

come this situation, Kobayashi [9] has proposed simple but

accurate closed-form expressions for the current distribu-

tions to be used as the basis functions. However, the

closed-form expressions do not necessarily reveal the fre-

quency dependence of the current distributions with good

accuracy [12].
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In this paper, we propose a new type of spectral-domain

method to solve the current distributions on the microstrip

line rigorously. The key point of the present method is the

band limitation of the spectral functions through convolu-

tion integration with a sampling function. Since all the

boundary conditions are satisfied in the spectral domain,

Fourier inverse transformation is not required to solve

surface current distributions. In this respect our method

differs from the space-domain approach [13]. This new

method has been successfully applied to the plane wave

scattering by metallic gratings where discretization was

performed by using a point matching method for the

numerical calculations. In contrast to this, discretization in

the present method is performed by the method of mo-

ments using the spherical Bessel function as a weighting

function. The main advantage of the present method is

that the Weber–Schafheitlin integration formula can be

effectively incorporated into the numerical integrations,

which enables us not only to save much computation time

but also to obtain accurate numerical results.

II. FORMULATION OF THE PROBLEM

Fig. 1 shows the geometry of the problem, where it is

assumed that the thickness of the strip is negligibly small,

the dielectric is lossless, and the strip as well as the ground

plane is perfectly conducting. In the following analysis, the

time dependence exp ( jtit ) is considered and this factor

will be suppressed throughout this paper. The boundary

conditions of the present problem are summarized as fol-

lows :

(Bl)

(B2]

(B3)

Radiation condition.

Continuity of tangential electric fields:

Ex(x, h+o, z)= Ex(.x, h-o, z)

E,(x, h+o, z)= E,(x, h–o, z). (1)

Continuity of tangential magnetic fields and their

discontinuity on the strip:

Hx(x, h+o, z)– Hx(x, h–o, z)

= -{mi(xqz)

Hz(x,lz +o, z)- Hz(i, h-o, z)

=Imz(x;z) (2)
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Now we let the remaining boundary condition (B5) be

strip

/

satisfied in the spectral domain in the following manner.
conductor Since the Fourier transform corresponding to a finite

w

k

section in the space domain is obtained from the convolu-

tion integration with a sampling function in the spectral

domain, the boundary conditions for (B5) are rewritten in

/—
the spectral domain as follows:

ground x
plane (1/77) /m Ex(t,lz)s(l-odt=o

Fig. 1, GeometW of the problem.

where J; (x, z) and J:(x, z) are normalized sur-

face currents on the strip.

(B4) Perfect conductor condition on the ground plane:

EX(X, O, Z)= EZ(X, O, Z)=O. (3)

(B5) Perfect conductor condition on the strip:

Ex(x, h,z)=E=(x,lZ, z)=o. (4)

We designate the propagation constant by ~, and we

express the z dependence of the fields as follows:

E(x, y,z)=E(x, y)exp(–j~z). (5)

In the subsequent analysis, this exponential factor will also

. –w

(l/*)/m l?=(t,k)s(t-odt=o (12)
—m

where the sampling function is defined by

~(~) = sin({w)/{. (13)

As a result, the problem is reduced to finding the unknown

surface currents so that (12) may be satisfied in the {

plane.

III. DISCRETIZATION

Now we recall that the sampling function defined by

(13) is a reproducing kernel for any entire functions to

order w [15]. Since the spherical Bessel function has this

analytical property, we have

be omitted.
(l/m) fmj,(fw)s(t -{)dr=j,(tw)

Analytical discussions are based on the following Fourier
(14)

—m

transformation pair: where the spherical Bessel function can be expressed in

terms of the Bessel function of half-integer order as fol-
~({) = fw ~(~)exp(j{~) dx lows :

—m..

~(x) = (1/2m)/~ j’({) exp(- j(x) d{. (6)
~,(x) ‘~=JW+l/2(X). (15)

—m Multiplying by j~({w ) in (12) and integrating with respect

After straightforward but somewhat lengthy algebraic ma- ‘0 ~ ‘rem – m ‘0 m leads ‘0

nipulations, we obtain the Fourier transforms of the tan-
(1/@~~ E.Y(t, h)jp(tw)dt=Ogential electric fields at y = h as follows: —m

Ex((,h)=u,(I, B)z(()+~2((>B)i(() (lqm E(t$A)jy(tw)dt=o (16)

Ez((, h)=u,(P> OL(()+~l(P>i)i(i) (7)
(;~0,1,2,3,.00).

where J:({) and J~(f ) are the Fourier transforms of the

surface current on the strip described in (2), and where Taking into account the singularities of the surface

other spectral functions used are defined bv currents near the edges of the strip, we expand them in the
. .

form
ul({,~) = [kgO({) tan(kh) -ygl({)]/rcOA({, ~) cc

U,({, /3) = – [ktan(kh)– y]l’P/K#({, ~)

with

gi(~) ‘K?–{* (i=O.1)

A({, /?)= -j[y+kcot(kk)] [c,y-ktan(kh)]

In the above expressions, we have assumed an exp ( – yy)

dependence for y > h corresponding to the boundary con- Wu(x) =cos(v@)/[n4m] (v even)

(8) <y(x) = ~ A$l, (x)
~=,
m

(9)
J:(x) = ~ BUYP(X) (17)

~=o

(10) where AV and Bu are unknown coefficients to be solved

and

@v(x) =cos[(v +l)@]/[(v+l)z’w]
(11) =

(v even)

–jsin[(v +l)@]/[(v+l)mv] (v odd)

dition (Bl). In addition, it should be noted that- these

spectral expressions satisfy the boundary conditions
= -jsin(vq)~[n~~] (v odd)

(B2)-(B4). (18)
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where

@=sin-’(x/w). (19)

The Fourier transforms of (17) are given as follows [16]:

w

(20)
V=(J

where .lV(x ) is the Bessel function.

Combining (7), (16), and (20), equations (16) can be

rearranged in the following matrix forms:

~ [AvK1(j3; v,p)+llv&(B; ~)P)l ‘o
~=o

E [~.&(@;~,P)+%~4(B; ~,p)] =0
“=0

(p=0,1,2,3,... )

where

(21)

K1(~; v,p) =2 fMU1(t, ~)[JV+l(tW)/tW] jp(tW) dt
o

(p+ v even)

. 0 (p+. odd)

K2(p; v,p)=o (p+ v even)

=2~@U2(t, ~) JU(~w)jp(tw)dt
o

(p+vodd)

K3(p; v,p)=o (p+ v even)

=2/%2 (~, t)[JU+l(tw)/tw] jp(tw)dt
o

(~+vodd)

K4(~; v,p) =2~mUl(~, t).lU(tw)&(tw) dt
o

(p. + v even)

. 0 (p+vodd). (22)

The propagation constant ~ of the stripline mode is solved

in such a way that the determinant of (21) becomes zero,

and the unknown coefficients of the expanded surface

currents can also be determined as an eigenvector.

In general, we have to resort to numerical matrix calcu-

lations by truncating p and v in (21) appropriately. In this

case it is important to carry out the numerical integrations

meciselv but without much computation time. We propose
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here an efficient numerical method based on the Weber-

Schafheitlin integration formula as shown in the Ap-

pendix. The numerical method proposed here has two

merits. One is that it saves computation considerably; the

other is that the numerical results of the current distribu-

tions can be obtained with good accuracy. This is why the

method greatly accelerates the convergence of the inner

product integrations, especially for large p and v.

IV. TEM MODE

In the preceding section we have derived the equation

for the propagation constant of a hybrid mode as well as

for the current distributions. It is not so easy to solve the

equation numerically, since it requires integration over a

semi-infinite interval. For ~. =1, however, we can proceed

with more analytical discussions. When the dielectric slab

is replaced by free space (~, = 1), the microstrip line sup-

ports a TEM wave with propagation constant Ko. In this

case the following relations are satisfied:

UI(KO,{)=O (23)

~(x, z) =0 (Av=o). (24)

Consequently, (22) is reduced to

~ BuK2(Ko; v,p) =0
V=()

where

K2(KO; V>P)

= j~~(& ~-zfit )JV(tw)jp(tw) dt
o

=0

(25)

(p+vodd)

(p+veven).

(26)

The above integrations can be performed analytically. The

first term is given by the Weber-Schafheitlin integration

formula (see the Appendix). As for the second term, we

have, for 2h > w,

= (fi/w) g (-l)”r(2M+2m)
P?l=o

.F(M+m, M–v–m, p+3/2; X)

/[r(m+l)r(V+l+m) r(p+3/2)2z~+’~X~+ml

(27)
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TABLE I
COEFFICIENTS OF CURRENT DISTRIBUTIONS

——T— _____ .———— ——_—— —__

E-~~~:
1 GHz 10 GHz 20 GHz

—— —.———

A, 1.6 OX1O-’ 6.;OX 10-’ 1.68 X1 O-I

A, 1.97 X1 O-5 -1 .32x10-3 -1 .47x10-2

,4, -1 .46x10-e -3.21X 10-5 3.67x 10-4
———-—_

A: -5 .62x10-g -6.75x 10-’ -6.43x 10-5

A, 2.75 x10-’ 3.05X 10-’ 2. 05x10-6
——— —.._

B, 1.00 1.00 1.00

B, 3.13 X1 O-’ 1.11 X1 O-! 2 .50x10-!
—. ——— —__ ______ _ ————

B, 4 .72x10-4 2.96 x10-3 1 .06x10-2
———. ————— ——-——

6, 5 92 x10-6 2.96x 10-6 -2 .08x10-4
——

B, 1.79 X1 O-8 l.41xlo-’— I,14X1O-5

c, =11.7; h = 3.04 mm, 2w =3.17 mm.

where

M=(p+v+l)/2

x=l/(l+H2)

H=2h/’w. (28)

F( a, p, y; z) is the Gauss hypergeometric function, defined

by

F(a, ~,y; z)=r(y)l[r(a)r(p)]

. ~ r(a+~)r(p+n)z”/[r(y+n)r(n +1)]. (29)
~=()

As a result, we can evaluate the surface currents precisely

without any numerical integrations for a ‘TEM wave.

Moreover, it can be easily proved from the above integra-

tion formulas that when H ~ m, the expansion coeffi-

cients BV should be zero except for v = O. Thus we have

~(x) =BO/[n~~] (H+oo) (30)

which is the Maxwell distribution when h - co

V. NUMERICAL RESULTS

In the following numerical examples, normalization with

regard to the amplitudes of the currents has been made

such that BO = 1.0, which means that the total longitudinal

current is unity; that is,

f’%)dx=l—n,

(31)

Table I shows numerical examples for the coefficients of

the expanded current distributions given by (20). It is

found that all terms of the transverse current as well as the

higher terms of the longitudinal current are negligibly

small for low frequency. This reflects the fact Ithat for low

frequencies, the Maxwell distribution given by (30) might

be a good approximation for the longitudinal current

distribution, neglecting the transverse current.

Table II shows a comparison of effective dielectric con-

stants obtained by three different methods; cllosed forms

for the current distributions have been used in [11], and

TABLE II
EFFECTIVE Dmmxmuc COMSTANT

. .

128 80.9729
r

80.9649
1

BO.9903

E, h/Z= 0.0 2w/h = 1.0

2 1.728

-{j:

1.730 1.7282

‘4 3.317 3.319 3.3178

8 6 742 6.753 6.7530

16 14.01 14.08 14.082

126 123.6 124.2 124.26

E, h/1= 0.1 2w/h = 1.0
—————

2 1.966

r--:-------

1.969 1.9687

4 3.953 3.956 3.9599

6 7.945 7.948 7.9555

16 15.94 15.95 15.953
———

128 127.9 127.9 127.95

E, hll= 1.0 2w/h = 1.0

TABLE III
EFFECTIVE DIELECTRIC CONSTANT

r..TB 6.51912
L

6.51941
z

6.51920

Er =9.1, h=l.27rnm, 2w=l.219mrn, f=l GHz
A: OSING ONLY J,(X)
6: USING BOTH J,(x) AND J,,(X)

the variational conformal mapping technique has been

employed in [12]. Some discrepancies within 0.6 percent

have been observed in the numerical results of the three

different methods, and the present results are more in

agreement with the variational conformal mapping tech-

nique than with the closed-form expression.

Table III shows another example of the effective dielec-

tric constant in comparison with the iteration method [4],

the closed-form expression [11], and the present method.

The matrix sizes used are (2O X 20), (2X 2), and (6X 6),

respectively. As far as the matrix size is concerned, the

closed-form expression is better than others. However, the

upper limit of numerical integration has been chosen as

aU =1.5 X103/w in [11], whereas aU = 50.()/W in the pre-

sent method. Thus the present method saves much compu-

tation time in the numerical integrations.
Fig. 2 shows the current distributions for three different

frequencies: ~ =1, 10, and 20 GHz; the parameters used

are h = 3.04 mm, 2W = 3.17 mm, and e, =11.7. It is

demonstrated that the amplitude of the transverse current

changes more rapidly as a function of frequency than the

longitudinal current. Fig. 3 is another version of Fig. 2,

where the longitudinal current has been normalized as
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2,0r 70GH7 -j 0.3
-“-, ,-

‘ ~ l~20GHzfi I Xlo-’

o.oK____ , lGHz O.

0.0 0.5 1.0
Xlw

Fig. 2. Current distributions versus normalized distance with the fre-

quency as a parameter (h = 3.o4 mm, 2W = 3.17 mm, and c,= 11.7).

10.0-

s

Iz

1.0-

0.0 0.5 1.0
Xlw

Fig. 3. Normalized current distributions versus normalized distance

with frequency as a parameter (h = 3.04 mm, 2 w = 3.17 mm, and

c, =11.7). –––– Shin, Wu, Jeng and Chen [12]; present

method.

1 13GHZ ,
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functions (18) are used in the present method, while the

elementary triangular functions are used in the space-

domain method [13]. It should be noted that if we choose

only one basis function (v =1) in the present method, the

maximum value always occurs at x/w = l/~.

VI. CONCLUSION

We have proposed a new type of spectral-domain method

combined with the sampling theorem in order to evaluate

the current distributions on a microstrip line accurately.

Discretization for numerical calculations has been per-

formed by the method of moments using the spherical

Bessel function as a weighting function for which the

sampling function is a reproducing kernel. Since the

Weber-Schafheitlin integration formula can be incorpo-

rated into the present formulations, good accuracy as well

as a considerable saving of computation time has been

achieved. The results also show good convergence. Numer-

ical calculations have been carried out for the effective

dielectric constants and the current distributions in com-

parison with various other methods. It has been demon-

strated that the present method is very effective in analyz-

ing an open microstrip line.

The present method can easily be applied to more

complicated structures such as a multilayered stripline and

a multistrip line. This will be the subject of future work.

APPENDIX

COMPUTATION OF THE INTEGRATIONS OF (22)

For t >> ICo, we have the following asymptotic relations

from (8)-(10):

Ul(t, p) -r/[ Ko(c, +l)] =tilt
U,(t, p) =q(p,t) - –p/[Ko(Er+ l)] =ti,

LTl(B, t) - [( C,+l)KO –2B]/[2KO(C, +l)~] =ti3/t.

(Al)

By extracting these main terms in (22), we can rewrite the

equations in the following forms:

K1(/3; v,p)=2~m[u1(t, /3)-ti,t]

“ [J.+l(tw)/tw]jY( tw) dt

+(2\w)~1~mJU+1( ~w)jW(tw)dt
o

K1(~; r.@=2j~[ U@)-ti2]JU( tw)jp(tw)dt

+~~z~%tw)jp(tw)dt
o

~3(~; V,/.L) =2~~[U2(~, t)–ti2] [JU+l(lw)/tw] j,,(tw)dt
o

+(2/w) ti2Jmt-lJ,+l(tw )jp(tw)dt
o

K4(~; v,p) =2~~[U1(~, t)–~3\~] JU(~w)jp(tw)dt

+~fi3~~t-lJU(tw) jY(tw)df. (A2)
n

Xlw
Fig. 4. Transverse current distributions versus normalized distance with

frequency as a parameter (h= 3.04 mm, 2W = 3.17 mm, and tr = 11.7).
---- Fach4 and De Zutter [13]; — present method.

~(x)/~(0) and the transverse current as ~(x)/~~U,

where J: ~= is its maximum amplitude at a certain point.

The normalization helps us to investigate the frequency

characteristics of the current distributions. In Fig. 3 com-

parison has also been made with the results based on the

variational conformal mapping technique [12].

Fig. 4 shows the transverse current distributions in com-

parison with the results of the space-domain method start-
ing from the calculation of a d yadic Green’s function in

the spectral domain [13]. As for the maximum points,

considerable discrepancies are observed between these two

results. The main reason for the discrepancies might be the

different choice of basis functions in ;he two me~hods: the -u
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In the above expressions, the integrands of the first terms

are so rapidly convergent that numerical integration over a

finite interval is enough to obtain good accuracy. On the

other hand, the second terms are calculated analytically by

means of the Weber-Schafheitlin formula as follows [16]:

fmt-m~n(trv)jy(tw)dt
o

= (6/2~)(w/2)mr(m+l/2)r[(p+n -J7t+w21
/{r[(m+p-n +W2]r[(~-p+n+OA
.r[(~+p+n +2)/21} (A3)

(m= Oorl, rz=vorv+l)

where r(x) is the Gamma function.

It is worth noting that the above integration is divergent

in the special case of m = O and n = p = O, which corre-

sponds to p = v = O in the last expression of (A2). In this

case, we put

/
123/t-+ti,t[t’ +(a/w)2] (A4)

where a is an arbitrary real number. Then, the following

integration formula is applicable [16]:

~m(t/[~2+(a/w)2]}Jo(tw)j,(tw)di=sinhaKo(a)/a
(A5)

where Ko( x ) is the modified Bessel function.
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