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New Type of Spectral-Domain Analysis of a
Microstrip Line
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Abstract —The problem of an open microstrip line is analyzed by the
spectral-domain method combined with the sampling theorem. In the
spectral domain, the boundary conditions of zero tangential electric fields
are expressed in terms of the convolution integral forms with a sampling
function, and these relations are discretized by the method of moments
with the spherical Bessel function as a weighting function. A well-chosen
incorporation of the Weber-Schafheitlin integration formula yields good
accuracy and saves a significant amount of time in numerical calculations.
Numerical examples are shown for the effective dielectric constants and
for the current distributions, both longitudinal and transverse, in compari-
son with the results obtained by various other methods.

I. INTRODUCTION

ICROSTRIP has become one of the most important

elements in microwave integrated circuits, and a
great many authors have analyzed the propagation charac-
teristics of modes on a microstrip line. Earlier works [1], {2]
were based on the quasi-TEM approximation, which is
valid only for low frequencies. For high frequencies, how-
ever, a rigorous treatment or a full-wave analysis is needed
to account for the dispersive properties of the propagation
characteristics of the stripline [3]-][13]. In this case the
accuracy of the final results depends on how accurately the
current distributions on the microstrip line have been
evaluated.

Various methods based on a full-wave theory have been
proposed to obtain both longitudinal and transverse cur-
rent distributions. The spectral-domain approach seems to
be one of the most powerful analytical methods, since the
Green function in the spectral domain can be obtained
rigorously for a microstrip-like structure. In the conven-
tional spectral-domain analyses [5], [11], however, the
Galerkin’s procedure has been applied in order to deter-
mine the unknown coefficients of the expanded current
distributions, and the final numerical results are strongly
dependent on the choice of the basis functions. To over-
come this situation, Kobayashi [9] has proposed simple but
accurate closed-form expressions for the current distribu-
tions to be used as the basis functions. However, the
closed-form expressions do not necessarily reveal the fre-
quency dependence of the current distributions with good
accuracy [12].
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In this paper, we propose a new type of spectral-domain
method to solve the current distributions on the microstrip
line rigorously. The key point of the present method is the
band limitation of the spectral functions through convolu-
tion integration with a sampling function. Since all the
boundary conditions are satisfied in the spectral domain,
Fourier inverse transformation is not required to solve
surface current distributions. In this respect our method
differs from the space-domain approach [13]. This new
method has been successfully applied to the plane wave
scattering by metallic gratings where discretization was
performed by using a point matching method for the
numerical calculations. In contrast to this, discretization in
the present method is performed by the method of mo-
ments using the spherical Bessel function as a weighting
function. The main advantage of the present method is
that the Weber—Schafheitlin integration formula can be
effectively incorporated into the numerical integrations,
which enables us not only to save much computation time
but also to obtain accurate numerical resuits.

II. FORMULATION OF THE PROBLEM

Fig. 1 shows the geometry of the problem, where it is
assumed that the thickness of the strip is negligibly small,
the dielectric is lossless, and the strip as well as the ground
plane is perfectly conducting. In the following analysis, the
time dependence exp(jwt) is considered and this factor
will be suppressed throughout this paper. The boundary
conditions of the present problem are summarized as fol-
lows:

Radiation condition.

(B1)

(B2) Continnity of tangential electric fields:
E(x,h+0,z2)=E (x,h—0,z2)
E,(x,h+0,z)=E.(x,h—0,z2). (1)

(B3) Continuity of tangential magnetic fields and their

discontinuity on the strip:

H(x,h+0,2)— H(x,h—0,z)
=y O/HO.]:,(X,Z)
H(x,h+0,z)— H(x,h—0,z2)

=\eo/o S (x,2) (2)
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Fig. 1. Geometry of the problem.

where J(x,z) and J (x,z) are normalized sur-
face currents on the strip.
(B4) Perfect conductor condition on the ground plane:

E.(x,0,z)=E,(x,0,z)=0. (3)
(BS) Perfect conductor condition on the strip:

E(x,h,z)=E,(x,h,z)=0. (4)

We designate the propagation constant by £, and we
express the z dependence of the fields as follows:

E(x,y,z) =E(x, y)exp(— jBz). (5)
In the subsequent analysis, this exponential factor will also
be omitted.

Analytical discussions are based on the following Fourier
transformation pair:

1) = [ 7(x)exp(jix) d

1) =0/2m) [ () exp (= jex) s (6)

After straightforward but somewhat lengthy algebraic ma-
nipulations, we obtain the Fourier transforms of the tan-
gential electric fields at y =/ as follows:

E (S h) =Uy(8.B) L)+ Up (8. B) L($)
E (& h) =0 (B, )L () +Ui(B.OL(E)  (7)

where J(¢) and J(¢) are the Fourier transforms of the
surface current on the strip described in (2), and where
other spectral functions used are defined by

Ui(£,B) = [kgo(§) tan (kh) — vg,($)] /koA (S, B)
U, (8. B) = — [k tan (kh) = y]$B /oA (8, B)
with
g ()=« (i=01) (%)
A B) == jly + koot (kh)][e,y — ke tan (kh)] (10)
Ko = @y€oly ey = wyeho z'fo\/f_w (11)

In the above expressions, we have assumed an exp(— yy)
dependence for y > k corresponding to the boundary con-
dition (Bl). In addition, it should be noted that these
spectral expressions satisfy the boundary conditions
(B2)—(B4).

(8)
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Now we let the remaining boundary condition (B5) be
satisfied in the spectral domain in the following manner.
Since the Fourier transform corresponding to a finite
section in the space domain is obtained from the convolu-
tion integration with a sampling function in the spectral
domain, the boundary conditions for (B5) are rewritten in
the spectral domain as follows:

(1/77)/7oo E(t,h)S(1—¢)dt=0

(1/77)]:” E(,h)S(t—¢)dr=0 (12)

where the sampling function is defined by

S($) =sin({w) /5. (13)
As a result, the problem is reduced to finding the unknown
surface currents so that (12) may be satisfied in the {
plane.

IIL

Now we recall that the sampling function defined by
(13) is a reproducing kernel for any entire functions to
order w [15]. Since the spherical Bessel function has this
analytical property, we have

(/m) [ ji(sw)S(e=£) dg = jy(ow)

DISCRETIZATION

(14)

‘where the spherical Bessel function can be expressed in

terms of the Bessel function of half-integer order as fol-
lows:

j,lL(x) = W/zxjp.+1/2(x)' (15)

Multiplying by j,(§w) in (12) and integrating with respect
to { from — o0 to oo leads to

(/) [ Bt h)j(ow) de =0

(l/w)fj;E:(t,h)jﬂ(tw)dt=0 (16)

(p=0,1,2,3,+-).

Taking into account the singularities of the surface
currents near the edges of the strip, we expand them in the
form

1(x)= ¥ 40,

1(x)= ¥ 8% (%) (17)

where 4, and B, are unknown coefficients to be solved
and

®@,(x) =cos[(» +1)¢]/[(» +1)7w] (v even)
== jsin[(r+1)¢]/[(»+1)7w] (v odd)
v, (x) =cos(v¢)/[vrm] (v even)
=—jsin(v¢)/[wm] (» 0dd)

(18)
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where

¢=sin"(x/w). (19)

The Fourier transforms of (17) are given as follows [16]:
. [o0]
Jx(g') = Z AvJv+1(§W)/§W
v=0

(®)= X BI() (20)

where J,,(x) is the Bessel function.
Combining (7), (16), and (20), equations (16) can be
rearranged in the following matrix forms:

Y [A,K.(B:v.p)+ BKy(B;v,8)] =0
r=0

S (ALK (B;v.p)+ BK(Bv)] =0 (21)

(p‘=071a2’3’ o )

where

Ko(Bivan) =2 Uit B) [y a(w) /] (o)

(g + v even)
=0 (p+ v odd)
K,(B;v,p)=0  (p+veven)
=2LWUKLB)LUW)AUW)ﬁ
(p+vodd)
Ky(Bswmp) =0 (n+veven)
=2[TG(B. ) [yalw)/00] () de
(p+7odd)

Ko(Bivp) =2 (B, ), (1) (1) d

(u + v even)

=0 (p+vodd). (22)
The propagation constant 8 of the stripline mode is solved
in such a way that the determinant of (21) becomes zero,
and the unknown coefficients of the expanded surface
currents can also be determined as an eigenvector.

In general, we have to resort to numerical matrix calcu-
lations by truncating p and » in (21) appropriately. In this
case it is important to carry out the numerical integrations
precisely but without much computation time. We propose
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here an efficient numerical method based on the Weber—
Schafheitlin integration formula as shown in the Ap-
pendix. The numerical method proposed here has two
merits. One is that it saves computation considerably; the
other is that the numerical results of the current distribu-
tions can be obtained with good accuracy. This is why the
method greatly accelerates the convergence of the inner
product integrations, especially for large p and ».

IV. TEM MobDE

In the preceding section we have derived the equation
for the propagation constant of a hybrid mode as well as
for the current distributions. It is not so easy to solve the
equation numerically, since it requires integration over a
semi-infinite interval. For €, =1, however, we can proceed
with more analytical discussions. When the dielectric slab
is replaced by free space (e, =1), the microstrip line sup-
ports a TEM wave with propagation constant k. In this
case the following relations are satisfied:

Uy(ke.§) =0 (23)
Q(x.2)=0  (4,=0). (24)
Consequently, (22) is reduced to
E B,K,(xq;7,p) =0 (25)
r=90
where
Ky(xg; v, 1)

=jfow(l—e"”').]y(tw)ju(tw)dt (p+ 7 odd)

(p +» even).
(26)

The above integrations can be performed analytically. The
first term is given by the Weber-Schafheitlin integration
formula (see the Appendix). As for the second term, we
have, for 2 > w,

fooe‘Zh’J,,(tw)jp(tw) dt
0

=(Va /w) }oi (-1)"T2M+2m)

m=10

F(M+m,M—v—m,p+3/2; X)

[[T(m+1)T(» +1+m)T(p+3/2)22M+ 2myM+m]
(27)
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TABLE 1
COEFFICIENTS OF CURRENT DISTRIBUTIONS
1 GHz 10 GHz 20 Gz
Ay 1.60x10-2 6.90x 10-3 1.68x 101
As 1.97x10-8 -1.32x10"2 -1.47x10-2
As -1.46x 10-2 -3.21x10-% 3.87x10-4
Aq -5.62x 10-° -6.75x10"° -6.43x10-°
Ao 2.75x10-° 3.05x10-° 2.05x10-%
Be 1.00 1.00 1.00
B, J.13x 10-2 1.11x 107! 2.50x10-¢
B, 4.72x 1072 2.96x 102 1.06x10-2
Be 5 92x 10-¢ 2.96x 108 -2.08x 1074
Bg 1.79%x10-8 1.41x10-8 1.14x10-5

€, =117; h=3.04 mm, 2w =317 mm.

where
M=(p+v+1)/2
X=1/(1+ H?)
H=2h/w. (28)

F(a, B8, v: z) is the Gauss hypergeometric function, defined
by

F(a.B,v;z) =T(v)/[I(«)T(B)]
- iF(a+n)F(B+n)z"/[T(y+n)T(n+1)]. (29)

As a result, we can evaluate the surface currents precisely
without any numerical integrations for a TEM wave.
Moreover, it can be easily proved from the above integra-
tion formulas that when H — oo, the expansion coeffi-
cients B, should be zero except for » = 0. Thus we have

J(x) =By/[ w2 —57]

which is the Maxwell distribution when k — oo.

(H-eo)  (30)

V. NUMERICAL RESULTS

In the following numerical examples, normalization with
regard to the amplitudes of the currents has been made
such that B, =1.0, which means that the total longitudinal
current is unity; that is,

/7 J(x) dx=1. (31)

Table I shows numerical examples for the coefficients of
the expanded current distributions given by (20). It is
found that all terms of the transverse current as well as the
higher terms of the longitudinal current are negligibly
small for low frequency. This reflects the fact that for low
frequencies, the Maxwell distribution given by (30) might
be a good approximation for the longitudinal current
distribution, neglecting the transverse current.

Table II shows a comparison of effective dielectric con-
stants obtained by three different methods; closed forms
for the current distributions have been used in [11], and

TABLE II
EFFECTIVE DIELECTRIC CONSTANT
REFERENCE [11] REFERENCE [12] PRESENT METHOD
2 1.64667 1.64721 1.64677
4 2.91642 2.91690 2.91677
8 5.44034 5.44052 5.44116
18 10.4789 10.4786 10.4807
128 80.9729 80.9649 80.9903
£, h/d=0.0 2w/h = 1.0
2 1.728 1.730 1.7282
4 3.317 3.319 3.3178
8 6 742 6.753 6.7530
16 14.01 14.08 14.082
128 123.6 124.2 124.26
£, h/A=10.1 29/h = 1.0
e 1.966 1.969 1.9687
4 3.953 3.958 3.9599
8 7.945 7.948 7.9585
16 15.94 15.95 15.953
128 127.9 127.9 127.95
£ . h/A= 1.0 2w/h = 1.0
TABLE III
EFFECTIVE DIELECTRIC CONSTANT
REFERENCE [4] REFERENCE [11] PRESENT METHOD
A 6.51914
B 6.51912 6.51941 6.51920
e .=9.7, h=1.2Tnm, 2w=1.219mm, f=1GHz
A: USING ONLY J,(x)
B: USING BOTH J,(x) AND J, (x)

the variational conformal mapping technique has been
employed in [12]. Some discrepancies within 0.6 percent
have been observed in the numerical results of the three
different methods, and the present results are more in
agreement with the variational conformal mapping tech-
nique than with the closed-form expression.

Table III shows another example of the effective dielec-
tric constant in comparison with the iteration method [4],
the closed-form expression [11], and the present method.
The matrix sizes used are (20x20), (2x2), and (6 X6),
respectively. As far as the matrix size is concerned, the
closed-form expression is better than others. However, the
upper limit of numerical integration has been chosen as
a,=15%10%/w in [11], whereas a,=50.0/w in the pre-
sent method. Thus the present method saves much compu-
tation time in the numerical integrations.

Fig. 2 shows the current distributions for three different
frequencies: f=1, 10, and 20 GHz; the parameters used
are h=3.04 mm, 2w=317 mm, and ¢, =11.7. It is
demonstrated that the amplitude of the transverse current
changes more rapidly as a function of frequency than the
longitudinal current. Fig. 3 is another version of Fig. 2,
where the longitudinal current has been normalized as
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Fig. 3. Normalized current distributions versus normalized distance
with frequency as a parameter (h=3.04 mm, 2w=3.17 mm, and

¢, =11.7), ——~~ Shin, Wu, Jeng and Chen [12]; present
method.
13GHz
,,// Nl xt o’
'.
- Ho.1
s
7 7G Hz_ h -
- e -~ =277 ;
7’ 77 \‘ -—
T = Y
/. 1GH
i . Z_100
0.0 05 1.0
xIw

Fig. 4. Transverse current distributions versus normalized distance with
frequency as a parameter (£ =3.04 mm, 2w =3.17 mm, and ¢, =11.7).
———— Fach¢ and De Zutter [13]; present method.

L(x) /J(0) and the transverse current as J(x) YA -
where J,__, is its maximum amplitude at a certain point.
The normalization helps us to investigate the frequency
characteristics of the current distributions. In Fig, 3 com-
parison has also been made with the results based on the
variational conformal mapping technique [12].

Fig. 4 shows the transverse current distributions in com-
parison with the results of the space-domain method start-
ing from the calculation of a dyadic Green’s function in
the spectral domain [13]. As for the maximum points,
considerable discrepancies are observed between these two
results. The main reason for the discrepancies might be the
different choice of basis functions in the two methods; the
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functions (18) are used in the present method, while the
elementary triangular functions are used in the space-
domain method [13]. It should be noted that if we choose
only one basis function (» =1) in the present method, the
maximum value always occurs at x /w =1/vy2.

VI. CONCLUSION

We have proposed a new type of spectral-domain method
combined with the sampling theorem in order to evaluate
the current distributions on a microstrip line accurately.
Discretization for numerical calculations has been per-
formed by the method of moments using the spherical
Bessel function as a weighting function for which the
sampling function is a reproducing kernel. Since the
Weber-Schafheitlin integration formula can be incorpo-
rated into the present formulations, good accuracy as well
as a considerable saving of computation time has been
achieved. The results also show good convergence. Numer-
ical calculations have been carried out for the effective
dielectric constants and the current distributions in com-
parison with various other methods. It has been demon-
strated that the present method is very effective in analyz-
ing an open microstrip line.

The present method can easily be applied to more
complicated structures such as a multilayered stripline and
a multistrip line. This will be the subject of future work.

APPENDIX
COMPUTATION OF THE INTEGRATIONS OF (22)

For ¢ > k,, we have the following asymptotic relations
from (8)-(10):

U (t,B) ~t/[ko(e, +1)] :(jlt
UZ(t’IB) :U2(ﬂ’t) - _B/[K0(€r+1)] :U2

Ui(B. 1) ~ (e, +1)xo—2B]/[2x(e, +1)1] = Uy /1.
(A1)

By extracting these main terms in (22), we can rewrite the
equations in the following forms:

Ki(B:v.0) =2 (U1, B) = U]
s (ow) fow] g (ow) ar
/)0, [ (00) ju00) dr
K(Biv.w) =2 [ (Ut B) = Do g () jo(ow)
+2U2f0 T(tw) j,(w) di
Ky(Bsv.p) = 2];)00[(]2(3: t)-G] [Jvu(tw)/[W] Ju(tw)dt
+@/w) G, [T, (ow) j(ow) do
Ka(Biv.w) =2 [ (0B )= Tu/e] 4, (w) ju (o)

20, CrY, (ow) j, (w) d. (A2)
0
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In the above expressions, the integrands of the first terms
are so rapidly convergent that numerical integration over a
finite interval is enough to obtain good accuracy. On the
other hand, the second terms are calculated analytically by
means of the Weber-Schafheitlin formula as follows [16]:

foof’"Jn(tw)jN(tw)dt

= (Y /2w)(w/2)"T(m+1/2)T[(p+n—-m+1)/2]
/{F[(m+p— n+2)/2]T[(m—p+n+1)/2]
T[(m+p+n+2)/2]) (A3)
(m=0orl, n=vor v+1)
where I'(x) is the Gamma function.
It is worth noting that the above integration is divergent
in the special case of m =0 and n=p =0, which corre-

sponds to p=r =0 in the last expression of (A2). In this
case, we put

[j3/t~—>[j3t/[t2+(a/w)2] (A4)
where a is an arbitrary real number. Then, the following
integration formula is applicable [16]:

/°°<z/[zz +(a/w)|}Jo(tw) jo(tw) di = sinhaKo(a) /a
0

(A5)
where K,(x) is the modified Bessel function.
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